

BEST VALUE IN THE WORLD OF CUTTING TOOLS

COATED PM60 END MILLS

All-New Material. All-New Approach to Cutting Tools.

The Ultimate Problem-Solver for Your Shop.

- Higher feeds and speeds capability than traditional HSS and cobalt tools
- Higher performance in unstable cutting conditions with heavy vibrations
- Less expensive and more versatile than general purpose carbide tools

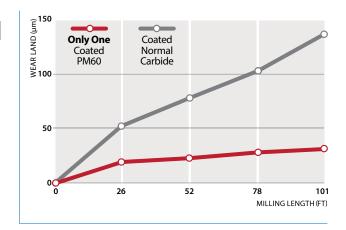
COATED PM60 END MILLS

PUSH PRODUCTIVITY HIGHER in the Most Challenging Conditions with Cost-Effective Performance.

Don't fear unstable cutting conditions.

ONLY ONE end mills provide unbridled performance that won't fade in the long runs. Compared to HSS Co8 and solid carbide, ONLY ONE can take the vibrations – without fear of chipping – and get the job done. With YG-1's unique PM60 coating that provides 12% more cobalt than most competitors, ONLY ONE end mills not only out-perform the competition, they outlast them, too.

- Top toughness performance through new advanced PM60 tool material
- Versatile Use on nearly any workpiece material or machine
- Productivity Operate at speeds and feeds above traditional HSS tools
- Stands up to conditions where carbide may chip: unstable conditions, older equipment, heavier cuts
- Exceptional heat disbursement through advanced PM60 coating
- Coarse and fine profile roughing style through 1½-inch diameters


PRICE

POSITIONING MAP CUTTING SPEED PERFORMANCE Normal Carbide **ONLY ONE** Coated Normal Carbide **ONLY ONE** (Coated PM60) (Coated PM60) HSS Co8 TOUGHNESS Extreme toughness beats HSS Co8 Performs better than HSS Co8 Wider application range versus carbide tools Price advantage over conventional coated carbide

Stop Cutting Yourself Short on Performance and Durability. CASE STUDY

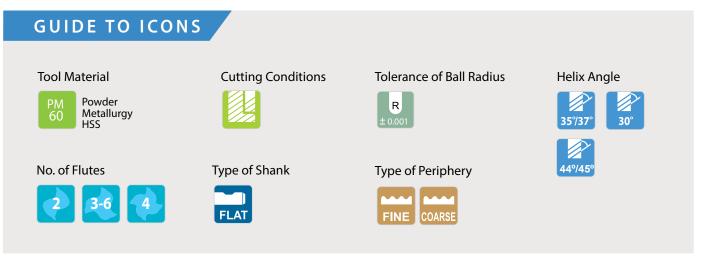
Compared to 4-Flute Square End Mill, S45C

	Cutting Conditions								
Competing tools	ONLY ONE Coated PM60	Coated Normal Carbide							
Size	Ø10xØ10x22x72	Ø10xØ10x22x70							
Work Material	- JIS : S45C - DIN : C45								
RPM	2,750 rev/min.								
Feed	20.47 inch/min.								
Milling Method	Down & Sic	le Cutting							
Milling Depth	Axial: 12"	Radial: .04"							
Coolant	Wet Cut								
Machine	Machining Center								
RESULT	ONLY ONE Coated PM60 >	Coated Normal Carbide							

This case study proves the point.

ONLY ONE end mills stay sharper, cut cleaner and resist wear longer than convention coated carbide. That's performance and durability you can bank on.

Get the economic edge.


With ONLY ONE in your shop, you've got the power to cut the toughest materials and your machine tool cost, too. That's because ONLY ONE end mills are competitively priced and can replace a wide range of tools in your crib. Priced about 30%

less than larger carbide tools, ONLY ONE end mills can outperform M42 and PM30. So go deeper. Go faster. Go longer - with ONLY ONE.

SELECTION GUIDE

			Dian	neter	
ltem	tem Model Description		Min.	Max.	Page
					Unit: Inch
GYG64		2-FLUTE (Center Cut)	D1/8	D1	7
GYG65		4-FLUTE (Center Cut)	D1/8	D1	7
GYG66		4-FLUTE MULTIPLE HELIX (Center Cut)	D1/8	D1	8
GYG67		PM60, 4-FLUTE BALL NOSE	R1/16	R1/2	9
GYG68		MULTI-FLUTE ROUGHING - FINE (Center Cut)	D1/4	D1-1/4	10
GYG69		MULTI-FLUTE MULTIPLE HELIX CORNER RADIUS ROUGHING - FINE (Center Cut)	D1/4	D1	11
GYG70		MULTI-FLUTE ROUGHING - COARSE (Center Cut)	D1/4	D1-1/4	12
	RECOMMENDED CUTTING CO	NDITIONS			14

 \bigcirc Excellent \bigcirc Good

		Ρ		м	К		N	S
Carbon Steels	Alloy Steels	Prehardened Steels	Carbon Steels	Stainless Steels	Cast Iron	Copper	Aluminum	Titanium
~HRc20	HRc20-30	HRc30-40	HRc40-45	Steels				
Ø	Ø	0	0	Ø	Ø	0		
Ø	Ø	0	0	Ø	Ø	0		
Ø	Ø	0	0	Ø	Ø	0		
Ø	Ø	0	0	Ø	Ø	0		
Ø	Ø	0	0	Ø	Ø	0		
Ø	Ø	0	0	Ø	Ø	0		
Ø	Ø	0	0	Ø	O	0		

ONLY ONE COATED PM60 KITS ARE HERE!

Versatile performance comes packed in every kit.

Not only will the new ONLY ONE kits cut your toughest materials, they'll cut your tool cost, too. That's because they replace a whole host of carbide end mills at a much lower price. Check out our three new cutting kits.

See page 13 for more details.

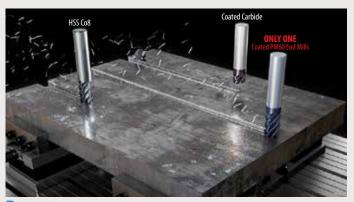
ONLY ONE Focus: Getting the Job Done.

As the illustrations show, neither coated carbide or HSS Co8 can keep pace with the ONLY ONE end mills' superior cutting performance. In fact, coated carbide breaks down halfway through the cut (Illustration A). HSS Co8 can't take the heat and stops dead in its tracks (Illustration B). But the ONLY ONE end mill cuts on and on.

The formula for this success – a combination of an advanced powdered metal substrate, 12% cobalt and YG-1's super-tough ALCr-based Y-Coating. It all comes together to deliver unmatched performance in the toughest materials.

Run Faster. Run Deeper

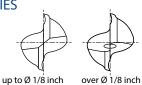
With edge strength that won't back down, you've got the cutting power to take on heavier, deeper cuts with fewer passes. And since ONLY ONE was born with PM60 at its core, it outlasts, outperforms and can save you up to 30% compared to the cost of carbide.

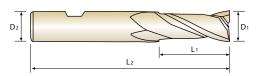

Versatile Problem-Solver

For stainless, alloys, carbon steels and cast irons, the ONLY ONE end mill can be the only tool you need. With this kind of versatile performance built in, you can say goodbye to the competition's powdered metal and carbide mills and hello to the best value in cutting tools today, only from YG-1..

A. Coated carbide starts out strong. But as the race heats up, it breaks down halfway through the cut.

B. The HSS Co8 mill's 8% cobalt coating is no match for the ONLY ONE's 12% carbide and PM60 core.


Why ONLY ONE end mills?


- Less expensive and more versatile than general purpose carbide tools
- Excellent performance in unstable conditions, such as extended reach applications (tool length > 2X diameter of tool) and less stable set-ups, due to fixturing or long overhangs
- Perfect for older equipment, and manual machines, as well as newer CNC machines
- Higher performance in slotting applications
- Increased productivity in deep, heavy cuts
- Maximum toughness to resist wear
- Exceptional heat disbursement through advanced PM60 core
- Coarse and fine profile roughing style through 1½-inch diameters
- Ideal for training and tech schools

2-FLUTE (CENTER CUT) GYG64 SERIES

				Unit: Inch
EDP No.	Mill Diameter	Shank Diameter	Length of Cut	Overall Length
Y-Coated	D1	D2	L1	L2
GYG64008	1/8	3/8	3/8	2-5/16
GYG64012	3/16	3/8	7/16	2-5/16
GYG64016	1/4	3/8	1/2	2-5/16
GYG64020	5/16	3/8	9/16	2-5/16
GYG64024	3/8	3/8	9/16	2-5/16
GYG64032	1/2	1/2	1	3
GYG64040	5/8	5/8	1-5/16	3-7/16
GYG64048	3/4	3/4	1-5/16	3-7/16
GYG64064	1	1	1-5/8	4-1/8

4-FLUTE (CENTER CUT) GYG65 SERIES

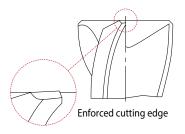
PM 4 30°	FLAT P. 15	l		
EDP No.	Mill Diameter	Shank Diameter	Length of Cut	
Y-Coated	D1	D2	L1	
GYG65008	1/8	3/8	3/8	
GYG65012	3/16	3/8	1/2	
GYG65016	1/4	3/8	5/8	
GYG65020	5/16	3/8	3/4	
GYG65024	3/8	3/8	3/4	
GYG65032	1/2	1/2	1-1/4	
GVG65040	5/8	5/8	1-5/8	

GYG65032	1/2	1/2	1-1/4	3-1/4
GYG65040	5/8	5/8	1-5/8	3-3/4
GYG65048	3/4	3/4	1-5/8	3-7/8
GYG65056	7/8	7/8	1-7/8	4-1/8
GYG65064	1	1	2	4-1/2

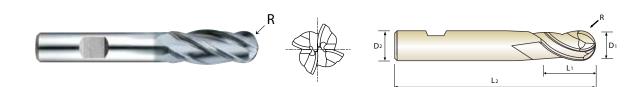
Mill Dia.	Shank Dia.	
Tolerance (inch)	Tolerance	
0~0012	h6	

Unit: Inch

L2 2-5/16 2-3/8 2-7/16 2-1/2 2-1/2

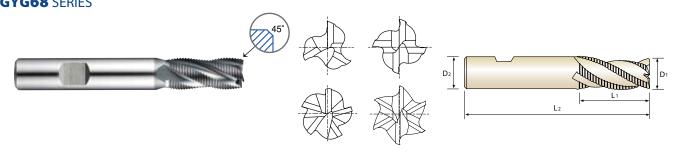

4-FLUTE MULTIPLE HELIX (CENTER CUT) GYG66 SERIES

PM 4	35°/37°	FLAT	C x 45°		P. 16
------	---------	------	----------------	--	-------


					Unit: Inch
EDP No.	Mill Diameter	Shank Diameter	Length of Cut	Overall Length	Chamfer
Y-Coated	D1	D2	L1	L2	
GYG66008	1/8	3/8	3/8	2-5/16	.004
GYG66012	3/16	3/8	1/2	2-3/8	.006
GYG66016	1/4	3/8	5/8	2-7/16	.007
GYG66020	5/16	3/8	3/4	2-1/2	.007
GYG66024	3/8	3/8	3/4	2-1/2	.011
GYG66032	1/2	1/2	1-1/4	3-1/4	.013
GYG66040	5/8	5/8	1-5/8	3-3/4	.015
GYG66048	3/4	3/4	1-5/8	3-7/8	.019
GYG66064	1	1	2	4-1/2	.019

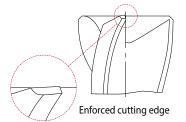
Mill Dia.	Shank Dia.
Tolerance (inch)	Tolerance
0~0012	h6

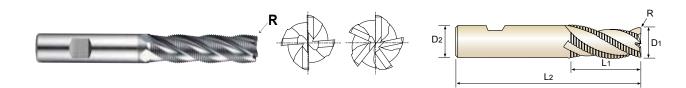
4-FLUTE BALL NOSE GYG67 SERIES



					Unit: Inch
Radius of Ball Nose (R)	Mill Diameter D1	Shank Diameter (D2)	Length of Cut (L1)	Overall Length (L2)	EDP No. Y-Coated
R1/16	1/8	3/8	3/8	2-5/16	GYG67008
R3/32	3/16	3/8	1/2	2-3/8	GYG67012
R1/8	1/4	3/8	5/8	2-7/16	GYG67016
R5/32	5/16	3/8	3/4	2-1/2	GYG67020
R3/16	3/8	3/8	3/4	2-1/2	GYG67024
R1/4	1/2	1/2	1-1/4	3-1/4	GYG67032
R5/16	5/8	5/8	1-5/8	3-3/4	GYG67040
R3/8	3/4	3/4	1-5/8	3-7/8	GYG67048
R1/2	1	1	2	4-1/2	GYG67064

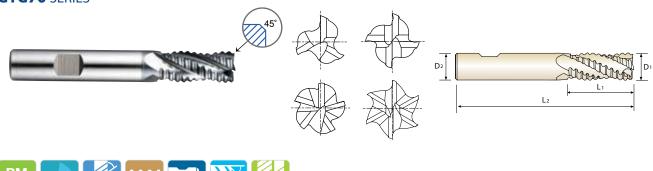
Mill Dia.	Shank Dia.
Tolerance (inch)	Tolerance
0~0012	h6


MULTI-FLUTE ROUGHING - FINE (CENTER CUT) GYG68 SERIES


						Unit: Inch
EDP No.	Mill Diameter	Shank Diameter	Length of Cut	Overall Length	No. of Flutes	Chamfer
Y-Coated	D1	D2	L1	L2		
GYG68016	1/4	3/8	5/8	2-7/16	3	.020
GYG68020	5/16	3/8	3/4	2-1/2	3	.020
GYG68901	5/16	3/8	1-3/8	3-3/16	3	.020
GYG68024	3/8	3/8	3/4	2-1/2	4	.020
GYG68902	3/8	3/8	1-1/2	3-1/4	4	.020
GYG68032	1/2	1/2	1-1/4	3-1/4	4	.030
GYG68903	1/2	1/2	2	4	4	.030
GYG68040	5/8	5/8	1-5/8	3-3/4	4	.030
GYG68904	5/8	5/8	2-1/2	4-5/8	4	.030
GYG68048	3/4	3/4	1-5/8	3-7/8	4	.030
GYG68905	3/4	3/4	2-1/2	4-3/4	4	.030
GYG68906	3/4	3/4	3	5-1/4	4	.030
GYG68064	1	1	2	4-1/2	5	.030
GYG68907	1	1	4	6-1/2	5	.030
GYG68116	1-1/4	1-1/4	2	4-1/2	6	.042

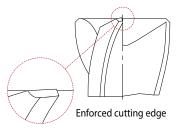
	Dia. ce(inch)
up to 1	0~+.0030
over 1	0~+.0060

MULTI-FLUTE MULTIPLE HELIX (CENTER CUT) CORNER RADIUS ROUGHING - FINE (CENTER CUT) GYG69 SERIES



						Unit: Inch
EDP No.	Corner Radius	Mill Diameter	Shank Diameter	Length of Cut	Overall Length	No. of Flutes
Y-Coated	R	D1	D2	L1	L2	
GYG69016	R.020	1/4	3/8	5/8	2-7/16	4
GYG69020	R.020	5/16	3/8	3/4	2-1/2	4
GYG69024	R.020	3/8	3/8	3/4	2-1/2	4
GYG69032	R.020	1/2	1/2	1-1/4	3-1/4	4
GYG69040	R.040	5/8	5/8	1-1/4	3-3/8	5
GYG69048	R.040	3/4	3/4	1-5/8	3-7/8	5
GYG69064	R.040	1	1	2	4-1/2	5

Mill Dia. Tolerance (inch)
0~0030


MULTI-FLUTE ROUGHING - COARSE (CENTER CUT) GYG70 SERIES

PM	3-6		••••			
60		30°	COARSE	FLAT	C x 45°	P. 19

						Unit: Inch
EDP No.	Mill Diameter	Shank Diameter	Length of Cut	Overall Length	No. of Flutes	Chamfer
Y-Coated	D1	D2	L1	L2		
GYG70016	1/4	3/8	5/8	2-7/16	3	.014
GYG70020	5/16	3/8	3/4	2-1/2	3	.014
GYG70024	3/8	3/8	3/4	2-1/2	4	.014
GYG70032	1/2	1/2	1-1/4	3-1/4	4	.022
GYG70040	5/8	5/8	1-5/8	3-3/4	4	.024
GYG70048	3/4	3/4	1-5/8	3-7/8	4	.024
GYG70064	1	1	2	4-1/2	5	.024
GYG70116	1-1/4	1-1/4	2	4-1/2	6	.030

Mill Toleran	
up to 1	0~+.0030
over 1	0~+.0060

NEW YG-1 ONLY ONE VALUE PACKS

Pick Up a Pack of Problem-Solvers Today!

Raise productivity while lowering your tool costs with a new YG-1 ONLY ONE Kit.

Made of an advanced powdered metal material (PM60), ONLY ONE tools are designed to hold up under challenging machining conditions where carbide tools may fail due to chipping from vibration or chatter.

Get a handle on unstable milling conditions and cut where carbide tools fail due to chipping or lower speeds. Take on the most challenging cuts at the most cost-effective price. Older machines or new, the ONLY ONE end mill line gives you more performance for less. These ONLY ONE kits, in three sizes and including speed and feed charts, are what every shop needs.

INLY ON

QNLY O

ONLY

These tools are included in each kit:

Kit EDP No. GYG65KIT7 ONLY ONE PM60 4-FLUTE 30-DEGREE HELIX

CENTER CUT REGULAR LENGTH END MILL

- **1)** GYG65008 1/8 x 3/8 x 3/8 x 2-5/16 **1)** GYG65012 • 3/16 x 3/8 x 1/2 x 2-3/8
- **1) GYG65016** 1/4 x 3/8 x 5/8 x 2-7/16
- **1) GYG65020 •** 5/16 x 3/8 x 3/4 x 2-1/2
- **1) GYG65024** 3/8 x 3/8 x 3/4 x 2-1/2
- **2) GYG65032** 1/2 x 1/2 x 1-1/4 x 3-1/4

KIT EDP No. GYG66KIT7

ONLY ONE PM60 4-FLUTE MULTIPLE HELIX CENTER CUT REGULAR LENGTH END MILL

1) GYG66008 • 1/8 × 3/8 × 3/8 × 2-5/16 1) GYG66012 • 3/16 × 3/8 × 1/2 × 2-3/8 1) GYG66016 • 1/4 × 3/8 × 5/8 × 2-7/16 1) GYG66020 • 5/16 × 3/8 × 3/4 × 2-1/2 1) GYG66024 • 3/8 × 3/8 × 3/4 × 2-1/2 2) GYG66032 • 1/2 × 1/2 × 1-1/4 × 3-1/4

KIT EDP No. GYG68KIT5

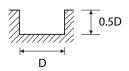
ONLY ONE PM60 4-FLUTE 30-DEGREE HELIX ROUGHING (FINE) CENTER CUT END MILL

1) GYG68024 • 3/8 × 3/8 × 3/4 × 2-1/2 2) GYG68032 • 1/2 × 1/2 × 1-1/4 × 3-1/4 1) GYG68040 • 5/8 × 5/8 × 1-5/8 × 3-3/4 1) GYG68048 • 3/4 × 3/4 × 1-5/8 × 3-7/8

ONLY ONE

M

ONL


Unit: Inch

RECOMMENDED CUTTING CONDITIONS GYG64 SERIES

2-FLUTE (CENTER CUT)

Hardness	Work	S	peed and I	Feed Reco	mmendation	S			Dia	ameter (in.)		
(HRc)	Materials	Type of Cut	Ap x D1	Ae x D1	Vc (SFM)	Parameters	1/8	1/4	3/8	1/2	5/8	3/4	1
HRc < 20	CARBON STEELS 10**, 11**, 12**,	Slotting	0.5	1	220	RPM	6723	3362	2241	1681	1345	1121	840
HRC < 20	12L**, 15**		0.5		(176–264)	Fz (hex)*	.0007	.0015	.0025	.0031	.0037	.0042	.0045
HRc > 20	ALLOY STEELS 41**, 43**, 51**,	Slotting	0.5	1	175	RPM	5348	2674	1783	1337	1070	891	669
HRc < 30	86**		0.5		(140–210)	Fz (hex)*	.0006	.0014	.0025	.0031	.0036	.0041	.0044
	ALLOY STEELS	Slotting	0.5	1	110	RPM	3362	1681	1121	840	672	560	420
HRc < 35	TOOL STEELS				(88–132)	Fz (hex)*	.0006	.0013	.0024	.0030	.0035	.0039	.0042
	ALLOY STEELS	Slotting	0.3	1	85	RPM	2598	1299	866	649	520	433	325
HRc < 40	TOOL STEELS		0.5		(68–102)	Fz (hex)*	.0005	.0012	.0022	.0027	.0031	.0035	.0038
к	CAST IRON Gray, Malleable,	Slotting	0.5	1	220	RPM	6723	3362	2241	1681	1345	1121	840
	Ductile		0.5		(176–264)	Fz (hex)*	.0007	.0015	.0025	.0031	.0037	.0042	.0045
м	STAINLESS STEELS 303, 304, 316, 316L,	Slotting	0.5	1	95	RPM	2903	1452	968	726	581	484	363
, m	410, 416		0.5	1	(76–114)	Fz (hex)*	.0005	.0012	.0022	.0027	.0031	.0035	.0038

FOR CARBON STEELS (HRc <20), ALLOY STEELS (HRc >20 ~ <30), ALLOY/TOOL STEELS (HRc >30 ~<35), CAST IRON AND STAINLESS STEELS :

FOR ALLOY/TOOL STEELS (HRc >30 ~<35):

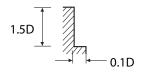
RPM = rev./min.

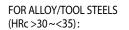
SFM = ft/min.

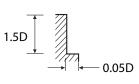
Fz (hex) = chip load per tooth

Ap = Axial depth of cut

Ae = Radial depth of cut

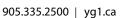

- * Fz (hex) is the actual chip thickness per tooth when chip thinning calculations are applied. Use appropriate chip thinning calculations for your application.
- Maximum recommended axial and radial depths shown.
- ▶ Recommendations above are based on ideal conditions.
- Adjust parameters accordingly for small taper machining centers or less rigid conditions.
- Reduce feed and speed recommendations as process dictates.
- ▶ Reduce feed by approximately 50% if L.O.C. (length of cut) is over 3 x D.


RECOMMENDED CUTTING CONDITIONS GYG65 SERIES


4-FLUTE (CENTER CUT)

Hardness	Work	Sr	peed and I	eed Reco	mmendation	s			Dia	ameter (in.)		
(HRc)	Materials	Type of Cut	Ap x D1	Ae x D1	Vc (SFM)	Parameters	1/8	1/4	3/8	1/2	5/8	3/4	1
HRc < 20	CARBON STEELS 10**, 11**, 12**,	Side Cutting	1.5	0.1	260	RPM	7946	3973	2649	1986	1589	1324	993
FINC < 20	12L**, 15**		1.5	0.1	(208 – 312)	Fz (hex)*	.0006	.0013	.0025	.0027	.0031	.0035	.0037
HRc > 20	ALLOY STEELS 41**, 43**, 51**,	Side Cutting	1.5	0.1	200	RPM	6112	3056	2037	1528	1222	1019	764
HRc < 30	86**		1.5	0.1	(160 - 220)	Fz (hex)*	.0006	.0012	.0023	.0026	.0030	.0034	.0037
	ALLOY STEELS	Side Cutting	1.5	0.1	130	RPM	3973	1986	1324	993	795	662	497
HRc < 35	TOOL STEELS				130 (104 - 156)	Fz (hex)*	.0006	.0012	.0023	.0026	.0029	.0032	.0035
	ALLOY STEELS	Side Cutting	1.5	0.05	105	RPM	3209	1604	1070	802	642	535	401
HRc < 40	TOOL STEELS		1.5	0.05	(84 - 126)	Fz (hex)*	.0005	.0012	.0022	.0025	.0029	.0031	.0034
к	CAST IRON Gray, Malleable,	Side Cutting	1.5	0.1	260	RPM	7946	3973	2649	1986	1589	1324	993
	Ductile		1.5	0.1	(208 - 312)	Fz (hex)*	.0006	.0012	.0025	.0027	.0030	.0033	.0035
м	STAINLESS STEELS 303, 304, 316, 316L,	Side Cutting	1.5	0.1	120	RPM	3667	1834	1222	917	733	611	458
	303, 304, 316, 316L, 410, 416		1.5	0.1	(96 - 144)	Fz (hex)*	.0005	.0012	.0022	.0025	.0030	.0032	.0035

FOR CARBON STEELS (HRc <20), ALLOY STEELS (HRc >20 ~ <30), ALLOY/TOOL STEELS (HRc >30 ~<35), CAST IRON AND STAINLESS STEELS :



RPM = rev./min.

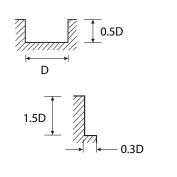
SFM = ft/min.Fz (hex) = chip load per tooth Ap = Axial depth of cut

Ae = Radial depth of cut

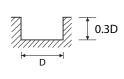
- * Fz (hex) is the actual chip thickness per tooth when chip thinning calculations are applied. Use appropriate chip thinning calculations for your application.
- Maximum recommended axial and radial depths shown.
- ▶ Recommendations above are based on ideal conditions.
- Adjust parameters accordingly for small taper machining centers or less rigid conditions.
- ▶ Reduce feed and speed recommendations as process dictates.
- ▶ Reduce feed by approximately 50% if L.O.C. (length of cut) is over 3 x D.

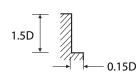
15

Unit: Inch


Unit: Inch

RECOMMENDED CUTTING CONDITIONS GYG66 SERIES


4-FLUTE MULTIPLE HELIX (CENTER CUT)


Hardness	Work	Sp	beed and l	Feed Reco	mmendation	s			Dia	ameter (i	in.)		mit: men
(HRc)	Materials	Type of Cut	Ap x D1	Ae x D1	Vc (SFM)	Parameters	1/8	1/4	3/8	1/2	5/8	3/4	1
		Side Cutting	1 5	0.2	260	RPM	7946	3973	2649	1986	1589	1324	993
HRc < 20	CARBON STEELS		1.5	0.3	(208 – 312)	Fz (hex)*	.0006	.0013	.0025	.0027	.0031	.0035	.0037
HKC < 20	10**, 11**, 12**, 12L**, 15**	Slotting	0.5	1	210	RPM	6418	3209	2139	1604	1284	1070	802
			0.5		(168 - 252)	Fz (hex)*	.0004	.0007	.0014	.0019	.0022	.0025	.0028
		Side Cutting	1.5	0.3	200	RPM	6112	3056	2037	1528	1222	1019	764
HRc > 20	ALLOY STEELS		0.1	0.5	(160 - 220)	Fz (hex)*	.0006	.0012	.0023	.0026	.0030	.0034	.0037
HRc < 30	41**, 43**, 51**, 86**	Slotting	0.5	1	160	RPM	4890	2445	1630	1222	978	815	611
			0.5		(128 - 192)	Fz (hex)*	.0004	.0007	.0014	.0019	.0022	.0025	.0027
		Side Cutting	1.5	0.3	130	RPM	3973	1986	1324	993	795	662	497
HRc > 30	ALLOY STEELS		1.5	0.5	(104 - 156)	Fz (hex)*	.0006	.0012	.0023	.0026	.0029	.0032	.0035
	TOOL STEELS	Slotting	0.5	1	105	RPM	3209	1604	1070	802	642	535	401
			0.5		(84 - 126)	Fz (hex)*	.0004	.0007	.0012	.0017	.0020	.0023	.0025
		Side Cutting	1.5	0.15	105	RPM	3209	1604	1070	802	642	535	401
HRc > 35	ALLOY STEELS		1.5	0.15	(84 - 126)	Fz (hex)*	.0005	.0012	.0022	.0025	.0029	.0031	.0034
HRc < 40	TOOL STEELS	Slotting	0.3	1	85	RPM	2598	1299	866	649	520	433	325
			0.5		(68 - 102)	Fz (hex)*	.0003	.0006	.0010	.0014	.0017	.0020	.0022
		Side Cutting	1.5	0.2	260	RPM	7946	3973	2649	1986	1589	1324	993
V	CAST IRON		1.5	0.3	(208 - 312)	Fz (hex)*	.0006	.0012	.0025	.0027	.0030	.0033	.0035
K	Gray, Malleable, Ductile	Slotting	0.5	1	210	RPM	6418	3209	2139	1604	1284	1070	802
			0.5	1	(168 - 252)	Fz (hex)*	.0004	.0007	.0014	.0019	.0022	.0025	.0028
		Side Cutting	1.5	0.3	120	RPM	3667	1834	1222	917	733	611	458
м	STAINLESS STEELS		0.1	0.5	(96 - 144)	Fz (hex)*	.0005	.0012	.0022	.0025	.0030	.0032	.0035
141	303, 304, 316, 316L, 410, 416	Slotting	0.5	1	95	RPM	2903	1452	968	726	581	484	363
			0.5		(76 - 114)	Fz (hex)*	.0004	.0007	.0012	.0017	.0020	.0023	.0025

FOR CARBON STEELS (HRc <20), ALLOY STEELS (HRc >20 ~ <30), ALLOY/TOOL STEELS (HRc >30~<35), CAST IRON AND STAINLESS STEELS :

FOR ALLOY/TOOL STEELS (HRc >30~<35):

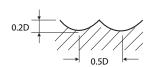
RPM = rev./min.

SFM = ft/min.

Fz (hex) = chip load per tooth

Ap = Axial depth of cut

Ae = Radial depth of cut

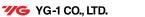

- * Fz (hex) is the actual chip thickness per tooth when chip thinning calculations are applied. Use appropiate chip thinning calculations for your application.
- Maximum recommended axial and radial depths shown.
- Recommendations above are based on ideal conditions.
- Adjust parameters accordingly for small taper machining centers or less rigid conditions.
- Reduce feed and speed recommendations as process dictates.
- ▶ Reduce feed by approximately 50% if L.O.C. (length of cut) is over 3 x D.

RECOMMENDED CUTTING CONDITIONS GYG67 SERIES

4-FLUTE BALL NOSE

4-FLUT	E BALL NOSE											ι	Jnit: Inch
Hardness	Work	SI	peed and	Feed Reco	mmendation	s			Dia	ameter (in.)		
(HRc)	Materials	Type of Cut	Ap x D1	Ae x D1	Vc (SFM)	Parameters	1/8	1/4	3/8	1/2	5/8	3/4	1
HRc < 20	CARBON STEELS 10**, 11**, 12**,	Profiling	0.2	0.5	260	RPM	7946	3973	2649	1986	1589	1324	993
TIME < 20	12L**, 15**		0.2	0.5	(208–312)	Fz (hex)*	.0006	.0014	.0028	.0032	.0037	.0041	.0045
HRc > 20	ALLOY STEELS 41**, 43**, 51**,	Profiling	0.2	0.5	175	RPM	5348	2674	1783	1337	1070	891	669
HRc < 30	86**		0.2	0.0	(140–210)	Fz (hex)*	.0005	.0011	.0024	.0027	.0030	.0034	.0037
	ALLOY STEELS	Profiling	0.2	0.5	130	RPM	3973	1986	1324	993	795	662	497
HRc < 35	TOOL STEELS			0.0	(104–156)	Fz (hex)*	.0005	.0011	.0021	.0024	.0027	.0031	.0034
	ALLOY STEELS	Profiling	0.2	0.3	95	RPM	2903	1452	968	726	581	484	363
HRc < 40	TOOL STEELS		0.2	0.5	(76–114)	Fz (hex)*	.0004	.0010	.0019	.0021	.0024	.0027	.0030
к	CAST IRON Gray, Malleable,	Profiling	0.2	0.5	260	RPM	7946	3973	2649	1986	1589	1324	993
ĸ	Ductile		0.2	0.5	(208–312)	Fz (hex)*	.0006	.0014	.0028	.0032	.0037	.0041	.0044
м	STAINLESS STEELS	Profiling	0.2	0.5	95	RPM	2903	1452	968	726	581	484	363
IVI	303, 304, 316, 316L, 410, 416		0.2	0.5	(76–114)	Fz (hex)*	.0004	.0010	.0019	.0021	.0024	.0027	.0030

FOR CARBON STEELS (HRc <20), ALLOY STEELS (HRc >20 ~ <30), ALLOY/TOOL STEELS (HRc >30 ~<35), CAST IRON AND STAINLESS STEELS :

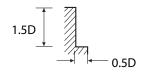


FOR ALLOY/TOOL STEELS (HRc >30~<35):

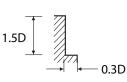
0.2D 030

 $\begin{array}{l} \mathsf{RPM} = \mathsf{rev./min.}\\ \mathsf{SFM} = \mathsf{ft/min.}\\ \mathsf{Fz} \ (\mathsf{hex}) = \mathsf{chip} \ \mathsf{load} \ \mathsf{per} \ \mathsf{tooth}\\ \mathsf{Ap} = \mathsf{Axial} \ \mathsf{depth} \ \mathsf{of} \ \mathsf{cut}\\ \mathsf{Ae} = \mathsf{Radial} \ \mathsf{depth} \ \mathsf{of} \ \mathsf{cut} \end{array}$

- * Fz (hex) is the actual chip thickness per tooth when chip thinning calculations are applied. Use appropriate chip thinning calculations for your application.
- Maximum recommended axial and radial depths shown.
- ▶ Recommendations above are based on ideal conditions.
- Adjust parameters accordingly for small taper machining centers or less rigid conditions.
- Reduce feed and speed recommendations as process dictates.
- ▶ Reduce feed by approximately 50% if L.O.C. (length of cut) is over 3 x D.


Unit: Inch

RECOMMENDED CUTTING CONDITIONS GYG69 SERIES


MULTI-FLUTE MULTIPLE HELIX CORNER RADIUS ROUGHING - FINE (CENTER CUT)

Hardness	Work	Sp	peed and	Feed Reco	mmendation	s			Dia	ameter (in.)		
(HRc)	Materials	Type of Cut	Ap x D1	Ae x D1	Vc (SFM)	Parameters	1/4	5/16	3/8	1/2	5/8	3/4	1
HRc < 20	CARBON STEELS 10**, 11**, 12**,	Side Cutting	1.5	0.5	220	RPM	3362	2689	2241	1681	1345	1121	840
nnc < 20	12L**, 15**		1.5	0.5	(176–264)	Fz (hex)*	.0010	.0015	.0020	.0025	.0030	.0036	.0042
HRc > 20	ALLOY STEELS 41**, 43**, 51**,	Side Cutting	1.5	0.5	160	RPM	2445	1956	1630	1222	978	815	611
HRc < 30	86**		1.5	0.5	(128–192)	Fz (hex)*	.0009	.0014	.0019	.0024	.0029	.0035	.0042
	ALLOY STEELS	Side Cutting	1.5	0.5	130	RPM	1986	1589	1324	993	795	662	497
HRc < 35	TOOL STEELS		1.5	0.5	130 (104–156)	Fz (hex)*	.0009	.0013	.0018	.0023	.0028	.0034	.0040
	ALLOY STEELS	Side Cutting	1.5	0.3	105	RPM	1604	1284	1070	802	642	535	401
HRc < 40	TOOL STEELS		1.5	0.5	(84–126)	Fz (hex)*	.0008	.0012	.0017	.0021	.0026	.0032	.0038
к	CAST IRON Gray, Malleable,	Side Cutting	1.5	0.5	220	RPM	3362	2689	2241	1681	1345	1121	840
K	Ductile		1.5	0.5	(176–264)	Fz (hex)*	.0010	.0015	.0020	.0025	.0030	.0036	.0042
м	STAINLESS STEELS	Side Cutting	1.5	0.5	140	RPM	2139	1711	1426	1070	856	713	535
IVI	303, 304, 316, 316L, 410, 416		C.1	0.5	(112–168)	Fz (hex)*	.0009	.0013	.0018	.0023	.0028	.0034	.0040

FOR CARBON STEELS (HRc <20), ALLOY STEELS (HRc >20 ~ <30), ALLOY/TOOL STEELS (HRc >30~<35), CAST IRON AND STAINLESS STEELS :

FOR ALLOY/TOOL STEELS (HRc >30~<35):

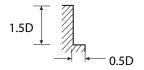
RPM = rev./min.

SFM = ft/min.

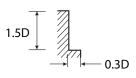
Fz (hex) = chip load per tooth

Ap = Axial depth of cut

Ae = Radial depth of cut


- * Fz (hex) is the actual chip thickness per tooth when chip thinning calculations are applied. Use appropriate chip thinning calculations for your application.
- Maximum recommended axial and radial depths shown.
- ▶ Recommendations above are based on ideal conditions.
- Adjust parameters accordingly for small taper machining centers or less rigid conditions.
- Reduce feed and speed recommendations as process dictates.
- ▶ Reduce feed by approximately 50% if L.O.C. (length of cut) is over 3 x D.

RECOMMENDED CUTTING CONDITIONS GYG68 | GYG70 SERIES


MULTI-FLUTE ROUGHING (CENTER CUT)

MULTI-FLUTE ROUGHING (CENTER CUT)													
Hardness (HRc)	Work Materials	Speed and Feed Recommendations					Diameter (in.)						
		Type of Cut	Ap x D1	Ae x D1	Vc (SFM)	Parameters	1/8	1/4	3/8	1/2	5/8	3/4	1
HRc < 20	CARBON STEELS 10**, 11**, 12**, 12L**, 15**	Side Cutting	1.5	0.5	180 (144–216)	RPM	2750	2200	1834	1375	1100	917	688
						Fz (hex)*	.0011	.0016	.0021	.0027	.0034	.0041	.0044
HRc > 20 HRc < 30	ALLOY STEELS 41**, 43**, 51**, 86**	Side Cutting	1.5	0.5	130 (104–156)	RPM	1986	1589	1324	993	795	662	497
						Fz (hex)*	.0010	.0015	.0020	.0026	.0033	.0040	.0043
HRc > 30 HRc < 35	ALLOY STEELS TOOL STEELS	Side Cutting	1.5	0.5	105 (84–126)	RPM	1604	1284	1070	802	642	535	401
						Fz (hex)*	.0009	.0014	.0019	.0026	.0033	.0039	.0041
HRc > 35 HRc < 40	ALLOY STEELS TOOL STEELS	Side Cutting	1.5	0.3	80 (64–96)	RPM	1222	978	815	611	489	407	306
						Fz (hex)*	.0008	.0012	.0017	.0023	.0030	.0036	.0040
к	CAST IRON Gray, Malleable, Ductile	Side Cutting	1.5	0.5	180 (144–2162)	RPM	2750	2200	1834	1375	1100	917	688
						Fz (hex)*	.0011	.0016	.0021	.0027	.0034	.0041	.0044
м	STAINLESS STEELS 303, 304, 316, 316L, 410, 416	Side Cutting	1.5	0.5	115 (92–138)	RPM	1757	1406	1171	879	703	586	439
						Fz (hex)*	.0009	.0014	.0019	.0026	.0033	.0039	.0041

FOR CARBON STEELS (HRc <20), ALLOY STEELS (HRc >20 ~ <30), ALLOY/TOOL STEELS (HRc >30 ~ <35), CAST IRON AND STAINLESS STEELS :

FOR ALLOY/TOOL STEELS (HRc >30~<35):

RPM = rev./min.

SFM = ft/min.

Fz (hex) = chip load per toothAp = Axial depth of cutAe = Radial depth of cut

- * Fz (hex) is the actual chip thickness per tooth when chip thinning calculations are applied. Use appropriate chip thinning calculations for your application.
- Maximum recommended axial and radial depths shown.
- ▶ Recommendations above are based on ideal conditions.
- Adjust parameters accordingly for small taper machining centers or less rigid conditions.
- Reduce feed and speed recommendations as process dictates.
- ▶ Reduce feed by approximately 50% if L.O.C. (length of cut) is over 3 x D.

YG-1 USA

730 Corporate Woods Parkway Vernon Hills, IL 60061 U.S.A.

Phone: 800-765-8665 Technical Assistance: 888-868-5988 yg1usa.com

YG-1 CANADA INC.

3375 North Service Road, Unit A8 Burlington, Ontario, CANADA L7N 3G2 Phone: +1 905-335-2500 FAX: +1 905-335-4003 Customer Service: orders@yg1.ca yg1.ca

GLOBAL HEADQUARTERS

211, Sewolcheon-ro, Bupyeong-gu Incheon, Korea Phone: +82-32-526-0909 E-mail: yg1@yg1.kr yg1.kr

Search 'YG-1' on social media outlets

NOTE: The information is provided for reference only. Tool specifications are subject to change without prior notice. Although we endeavor to supply accurate and timely information, there can be no guarantee to cover every particular application. YG-1 or publishers are not liable for any damage for use of the information.

YG1YUON200120001